De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Samenvatting

We introduce two novel methods for multivariate genome-wide-association meta-analysis (GWAMA) of related traits that correct for sample overlap. A broad range of simulation scenarios supports the added value of our multivariate methods relative to univariate GWAMA. We applied the novel methods to life satisfaction, positive affect, neuroticism, and depressive symptoms, collectively referred to as the well-being spectrum (Nobs = 2,370,390), and found 304 significant independent signals. Our multivariate approaches resulted in a 26% increase in the number of independent signals relative to the four univariate GWAMAs and in an ~57% increase in the predictive power of polygenic risk scores. Supporting transcriptome- and methylome-wide analyses (TWAS and MWAS, respectively) uncovered an additional 17 and 75 independent loci, respectively. Bioinformatic analyses, based on gene expression in brain tissues and cells, showed that genes differentially expressed in the subiculum and GABAergic interneurons are enriched in their effect on the well-being spectrum.

Toon meer
OrganisatieHogeschool van Amsterdam
Datum2019-03-01
TypeArtikel
DOI10.1038/s41588-018-0320-8
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk