Role of LNG in an optimized hybrid energy network
part 1: Flexibility analysis of a waste to energy plant coupled with LNG regasification unitRole of LNG in an optimized hybrid energy network
part 1: Flexibility analysis of a waste to energy plant coupled with LNG regasification unitSamenvatting
Global awareness on energy consumption and the environmental impacts of fossil fuels boost actions and create more supportive policies towards sustainable energy systems, in the last energy outlook, by the International Energy Agency, it was forecasted totals of 3600 GW from 2016 to 2040 of global deployment of renewables sources (RES), covering 37% of the power generation. While the Natural Gas overtake the coal demand in the energy mix, growing around 50%, manly by more efficiency system and the use of LNG for long-distance gas trades. The energy infrastructure will be more integrated, deploying decentralized and Hybrid Energy Networks (HEN). This transformation on the energy mix leads to new challenges for the energy system, related to the uncertainty and variability of RES, such as: Balancing flexibility, it means having sufficient resources to accommodate when variable production increase and load levels fall (or vice versa). And Efficiency in traditional fired plants, the often turn on and off or modify their output levels to accommodate changes in variable demand, can result in a decrease in efficiency, particularly from thermal stresses on equipment. This paper focus in the possibility to offer balancing resources from the LNG regasification, while ensure an efficient system. In order to asses this issue, using the energy Hub concept a model of a distributed HEN was developed. The HEN consist in a Waste to Energy plant (W2E), a more sustainable case of Combine Heat and Power (CHP) coupled with a LNG cold recovery regasification. To guarantee a most efficiency operation, the HEN was optimized to minimized the Exergy efficiency, additionally, the system is constrained by meeting Supply with variable demand, putting on evidence the sources of balancing flexibility. The case study show, the coupled system increases in overall exergy efficiency from 25% to 35% compared to uncoupled system; it brings additional energy between 1.75 and 3 MW, and it meets variable demand in the most exergy efficient with power from LNG reducing inputs of other energy carriers. All this indicated that LNG cold recovery in regasification coupled other energy systems is as promising tool to support the transition towards sustainable energy systems.
Organisatie | Hanze |
Datum | 2017-02-03 |
Type | Conferentiebijdrage |
Taal | Engels |