De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Open access

Open access

Samenvatting

Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.

OrganisatieHogeschool van Amsterdam
Gepubliceerd inProceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021) Pagina's: 165-172
Jaar2021
TypeConferentiebijdrage
DOI10.46354/i3m.2021.emss.023
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk