De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Deel deze publicatie

Object Classification Using 2D-LiDAR and YOLO for Robot Navigation

Object Classification Using 2D-LiDAR and YOLO for Robot Navigation

Samenvatting

Privacy concerns can potentially make camera-based object classification unsuitable for robot navigation. To address this problem, we propose a novel object classification system using only a 2D-LiDAR sensor on mobile robots. The proposed system enables semantic understanding of the environment by applying the YOLOv8n model to classify objects such as tables, chairs, cupboards, walls, and door frames using only data captured by a 2D-LiDAR sensor. The experimental results show that the resulting YOLOv8n model achieved an accuracy of 83.7% in real-time classification running on Raspberry Pi 5, despite having a lower accuracy when classifying door-frames and walls. This validates our proposed approach as a privacy-friendly alternative to camera-based methods and illustrates that it can run on small computers onboard mobile robots.

Organisatie
Datum2025-10-01
Type
DOI10.1007/978-3-032-00140-5_17
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk