De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Hyper-spectral frequency selection for the classification of vegetation diseases

Hyper-spectral frequency selection for the classification of vegetation diseases

Samenvatting

Reducing the use of pesticides by early visual detection of diseases in precision agriculture is important. Because of the color similarity between potato-plant diseases, narrow band hyper-spectral imaging is required. Payload constraints on unmanned aerial vehicles require reduc-
tion of spectral bands. Therefore, we present a methodology for per-patch classification combined with hyper-spectral band selection. In controlled
experiments performed on a set of individual leaves, we measure the performance of five classifiers and three dimensionality-reduction methods with three patch sizes. With the best-performing classifier an error rate of 1.5%
is achieved for distinguishing two important potato-plant diseases.

OrganisatieNHL Stenden Hogeschool
AfdelingAcademie Technology & Innovation
LectoraatLectoraat Computervision & Data Science
Datum2017-05-17
TypeArtikel
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk