Alles
NL

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Discovering operational decisions from data

a framework supporting decision discovery from data

Discovering operational decisions from data

a framework supporting decision discovery from data

Samenvatting

Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.

Toon meer
OrganisatieHogeschool Utrecht
AfdelingKenniscentrum Leren en Innoveren
LectoraatBetekenisvol Digitaal Innoveren
Gepubliceerd inDecision Springer, Vol. 51, Uitgave: 4, Pagina's: 417-436
Datum2024-10-24
TypeArtikel
DOI10.1007/s40622-024-00402-2
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk