Tracking Recurring Patterns in Time Series Using Dynamic Time Warping
Wij hanteren het label Open Access voor onderzoek met een Creative Commons licentie. Door een CC-licentie toe te kennen, geeft de auteur toestemming aan anderen om zijn of haar werk te verspreiden, te delen of te bewerken. Voor meer informatie over wat de verschillende CC-licenties inhouden, klik op het CC-icoon. Alle rechten voorbehouden wordt gebruikt voor publicaties waar enkel de auteurswet op van toepassing is.
Tracking Recurring Patterns in Time Series Using Dynamic Time Warping
Wij hanteren het label Open Access voor onderzoek met een Creative Commons licentie. Door een CC-licentie toe te kennen, geeft de auteur toestemming aan anderen om zijn of haar werk te verspreiden, te delen of te bewerken. Voor meer informatie over wat de verschillende CC-licenties inhouden, klik op het CC-icoon. Alle rechten voorbehouden wordt gebruikt voor publicaties waar enkel de auteurswet op van toepassing is.
Samenvatting
Dynamic time warping (DTW) is a distance measure to compare time series that exhibit similar patterns. In this paper, we will show how the warping path of the DTW algorithm can be interpreted, and a framework is proposed to extend the DTW algorithm. Using this framework, we will show how the dynamic programming structure of the DTW algorithm can be used to track repeating patterns in time series.

Organisatie | Ministerie van Defensie - NLDA |
Afdeling | Faculteit Militaire Wetenschappen |
Lectoraat | Militair Technische Wetenschappen |
Datum | 2019-09-02 |
Type | Conferentiebijdrage |
Taal | Engels |